The Use of Disposable Technology for Downstream Processing

Howard L. Levine, Ph.D.
BioProcess Technology Consultants, Inc.

CHI Immunotherapeutics and Vaccine Summit
Single Use Systems for Vaccine Manufacture
Cambridge, MA
August 16-19, 2010
Current Biomanufacturing Facilities

- Large hard-piped, stainless steel based facilities with stainless steel bioreactors
- Very expensive to build and validate
 - Construction costs \(\geq \$300 \text{ Million} \)
 - Construction timelines 2-5 years or more

- Controlled environment, highly classified suites
 - Tightly controlled flow of people, materials, and equipment
- Huge utilities for WFI, HVAC, Clean steam, CIP
 - Extensive piping, transfer panels, complex operations

From Clone to Commercial®

Photos courtesy of Lonza Biologics
A Brief History of Disposable Systems in Biomanufacturing

- **1970s:** Use of flasks, pipettes, filters, blood bags
- **1990s:** Bags for media, harvest, buffer prep
- **1996:** Introduction of the Wave bioreactor
- **1998:** Introduction of first membrane adsorbers
- **2004:** First 250 L disposable stirred-tank bioreactor
- **2006:** First 1,000 L disposable stirred-tank bioreactor
- **2009:** First 2,000 L disposable stirred-tank bioreactor

Latest implementation of disposables include:

- Harvest clarification
- Cell concentration
- Downstream processing
- Fill/finish operations

From Clone to Commercial®
Disposable Options Across Entire Manufacturing Flowpath

Cell Culture → Recovery/Downstream Processing → Formulation/Fill

Disposable Sensors

Media Prep/Storage → Buffer Prep/Storage

All conventional unit operations now have disposable format solutions
Disposable Systems for Buffer and Media Preparation

Thermo Scientific HyClone Single-Use Mixer (S.U.M.)

ATMI Pad-Drive™ Single-Use Mixing System

Mobius® Single-Use Mixing System (Millipore)

Systems not yet in routine use but adoption is growing

From Clone to Commercial®
Disposable Systems for Media and Buffer Storage

Routinely used in biomanufacturing

Technology available since 1990s

From Clone to Commercial®
<table>
<thead>
<tr>
<th>Vendor</th>
<th>Scale</th>
<th>Product Name</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xcellerex</td>
<td>Up to 2,000 L</td>
<td>XDR™ Bioreactor</td>
<td>Stirred-tank</td>
</tr>
<tr>
<td>Thermo Fisher</td>
<td>Up to 2,000 L</td>
<td>Single-use Bioreactor (S.U.B.)</td>
<td>Stirred-tank</td>
</tr>
<tr>
<td>(Hyclone)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More Process Scale Disposable Bioreactors

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Scale</th>
<th>Product Name</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sartorius</td>
<td>Up to 1,000 L</td>
<td>Biostat® Culti-bag</td>
<td>Stirred-tank</td>
</tr>
<tr>
<td>GE Healthcare (Wave)</td>
<td>Up to 1,000 L</td>
<td>Wave Bioreactor</td>
<td>Rocking Platform</td>
</tr>
</tbody>
</table>

From Clone to Commercial®
Stainless Steel vs. Disposable Bioreactors

- Comparable cell growth and productivity
- No cleaning or sterilization required
- Fast turnaround

- Minimal validation requirements
- Increased flexibility and process portability
From Clone to Commercial®

Downstream Processing Unit Operations

- **Normal Flow Filtration**
 - Clarification
 - Virus removal
 - Aseptic processing

- **Tangential Flow Filtration**
 - Concentration
 - Buffer exchange
 - Clarification

- **Centrifugation**
 - Clarification

- **Cell Breakage/Homogenization**
 - Recovery of intracellular products

- **Refolding**
 - For inclusion body products

- **Crystallization/Precipitation**

- **Chromatography**
 - Typical downstream process includes 3 – 4 steps
 - Ion exchange
 - Hydrophobic interaction
 - Affinity
 - Size exclusion
 - Reverse phase
Disposable Technologies for Filtration

Millistak® Pod Disposable Depth Filter System

Zeta Plus™ Encapsulated System

Routinely used for media and buffer prep; increasing use in bioreactor harvesting and other downstream processes
Disposable Format for Depth Filtration

➢ Improved CIP of Hardware
 • Self-contained, disposable Pods
 • Disposable feed ports and fittings
 • No product contact with endplates or process skid

➢ Improved Handling
 • No messy spent filters
 • Lightweight, easy set up and use
 • No hoist or high ceiling required

From Clone to Commercial®

Photos courtesy of Millipore
Disposable Formats for Chromatography

- Membrane adsorbers
 - Sartorius Sartobind®
 - Pall Mustang®
 - Natrix Adsept™

- Monoliths
 - BIA Separation

- Disposable chromatography columns
 - GE Ready-to-Process™
 - Repligen BioFlash™

- Other
 - Simulated moving bed
 - Scouting columns and technologies

Suppliers profiled are not a complete list nor an endorsement of any specific company or technology.
Advantages of Disposable Membrane Adsorbers

- Much smaller size/volume compared to conventional columns
- Minimize manufacturing time
- Minimize buffer requirements and tank usage
- No batch to batch carry-over

- High capacity, high flow rate leading to high throughput
- No column packing
- Elimination of cleaning validation, protein carry-over validation, reuse validation and storage validation

From Clone to Commercial®
DNA Removal with Membrane Adsorbers

- Membrane run in flow-through mode
 - Product flows through
 - DNA remains bound to membrane

Product Capture on a Membrane Adsorber

Photos and data courtesy of Natrix Bioseparations
Monoliths for Downstream Processing

- Continuous stationary phase with tightly controlled channel sizes cast as a homogeneous unit
 - Large channels make the adsorptive surface directly accessible to solutes as they pass through the column
 - Laminar flow eliminates peak broadening
 - Capacity and resolution relatively unaffected by flow rate
- Less sensitive to variations in flow rate, column configuration, and residence time
Monoliths Idea for Purification of Viral Vaccines

0.34 ml disk 8 ml column 80 ml column 800 ml column 8000 ml column
3-8 ml/min 10-40 ml/min 40-250 ml/min 400-2000 ml/min 2000-10000 ml/min

Photos and data courtesy of BIA Separations
Purification of Live Replication-dependent Influenza H1N1

Purification on CIM® DEAE Monolith

- Flow rate: 43 mL/min
- Load: 140 mL partially purified H1N1 solution
- Wash: Equilibration buffer
- Elute: 500 mM NaCl
- Clean: 2 M NaCl

Photos and data courtesy of BIA Separations
Comparison of New and Old Purification Process

MONOLITH BASED PURIFICATION PLATFORM
- Expansion of Vero cells
- Infection
- Harvest and Clearance
- Benzonase
- TFF
- CIM QA Monolith: Anion exchange chromatography (AIEX)
- Size Exclusion (SEC)

CENTRIFUGATION BASED PURIFICATION PLATFORM
- Expansion of Vero cells
- Infection
- Harvest and Clearance
- Benzonase
- Tangential Flow Filtration (TFF)
- Ultracentrifugation (UCF)
- Adjustment to final formulation

<table>
<thead>
<tr>
<th>Process</th>
<th>Monolith</th>
<th>Centrifugation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious virus yield</td>
<td>47.3%</td>
<td>11.4%</td>
</tr>
<tr>
<td>DNA removal</td>
<td>99.96%</td>
<td>99.50%</td>
</tr>
<tr>
<td>Protein removal</td>
<td>97.8%</td>
<td>97.4%</td>
</tr>
</tbody>
</table>

Photos and data courtesy of BIA Separations
Disposable Chromatography Examples

Ready-to-Process Chromatography Columns (GE Healthcare)
12.6, 25.1, and 35.9 cm ID x 20 cm H
Columns pre-packed with conventional media

BioFlash Disposable Format Chromatography (DFC™) Columns (Repligen)
1.2, 8, and 20 cm ID x variable H
Columns pre-packed with conventional media

From Clone to Commercial®
Continuous Purification with Simulated Moving Bed

- SMB is extremely scalable and leads to substantial reduction in manufacturing costs
- Fully disposable processing train can be paired with disposable bioreactors resulting in smaller process footprint
- Higher throughput per square foot of manufacturing space enables smaller manufacturing facilities

Photos courtesy of Tarpon Biosystems

From Clone to Commercial®
History of Simulated Moving Bed Technology

Simulated Moving Bed continuous chromatography is a well established unit operation.

Advantages include 40-60% reduction in buffers, solvents, and chromatography media.

History of SMB:

- 1950 – 1960 SMB developed for petrochemical industry
- 1960 – 1970 First applications in food industries
- 1980 – 1990 Fine chemical industries applications
- 1990 – 2000 Chiral separations for pharma industry
- 2000 – 2010 Biopharmaceutical applications
Continuous Downstream Processing with BioSMB™

- Process uses same fundamental phenomena as batch processes
 - No change in media and buffer composition
 - Same steps for binding, washing, and elution as in the corresponding batch process
- System volume depends on mass transfer kinetics, not binding capacity or titer

<table>
<thead>
<tr>
<th></th>
<th>Batch</th>
<th>BioSMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titer</td>
<td>3.5 gm/L</td>
<td></td>
</tr>
<tr>
<td>Batch size</td>
<td>2000 L</td>
<td></td>
</tr>
<tr>
<td>Productivity [g/L/day]</td>
<td>360</td>
<td>2630</td>
</tr>
<tr>
<td>Processing time</td>
<td>05:10 08:00 12:00 24:00</td>
<td></td>
</tr>
<tr>
<td>Protein A media [L]</td>
<td>88 8.0 5.2 2.6</td>
<td></td>
</tr>
<tr>
<td>Buffer [L]</td>
<td>4600 3100 3350</td>
<td></td>
</tr>
<tr>
<td>Number of columns</td>
<td>1 8 8 12</td>
<td></td>
</tr>
<tr>
<td>Cycles per batch</td>
<td>2 19 29 58</td>
<td></td>
</tr>
<tr>
<td>Protein A Media Costs</td>
<td>$ 880k $ 80k $ 52k $ 26k</td>
<td></td>
</tr>
</tbody>
</table>

Data courtesy of Tarpon Biosystems
BioSMB™ Makes Size Exclusion Chromatography Feasible

Continuous gel filtration chromatography of a vaccine VLP using a 12 column process set-up

Photos and data courtesy of Tarpon Biosystems
Freeze/thaw of Process Intermediates and Final Bulk Systems provide more homogeneous and gentle freezing of biopharmaceuticals.
Disposable Container/Closure Systems for Aseptic Filling

Aseptic Technologies *Crystal® Closed Vial Technology*

- No need to wash, depyrogenate, or sterilize (hot air-tunnel)
 - No need for WFI
 - Vials come pre-sterilized with intact seal
 - No conventional capping required
Influenza Vaccine Manufacturing Using Disposables

Cell Substrate Preparation → Infect & Incubate → Remove Cells, Purify VLPs → Inactivate Virus

Insect Cell Culture-Based Flu Vaccine Production in Disposable Mfg Systems:

From Clone to Commercial®
Driving Forces for Single-Use Technologies

- Improved return on capital
 - Reduced and deferred capital investment
 - Increased speed of deployment
 - Cost structure shifted to variable costs
 - Significant reduction in capital equipment costs (>70%)
- Reduced process equipment complexity
 - Process and product flexibility
 - Improved process control and portability
- Reduced facility complexity and cost
 - Faster construction, commissioning, and launch
 - No change-over cleaning/validation between strains/products
 - Significant reduction in facility/equipment validation

From Clone to Commercial®
Current Status of Disposable Systems

- Disposables are accepted industry-wide for development, clinical, and manufacturing use
- Almost all the unit operations and process components used in biomanufacturing can be replaced by disposables
- The cost benefit, convenience, and flexibility of moving to disposables are well documented
- More and more vendors are developing single use and disposable products
- Companies are now moving to disposables for clinical and potentially commercial manufacturing
- A completely disposable manufacturing flowpath should be possible in the foreseeable future
Increased facility utilization by reducing change-over time
Reduced fixed piping
Reducing cleaning and validation costs in multi-product operations
Improved process portability
Easier to manage and implement process changes

Increased operational flexibility by minimizing or eliminating multi-use equipment

From Clone to Commercial®

Photo courtesy of Acceleron Pharma
Thank you!

BioProcess Technology Consultants, Inc.

12 Gill Street, Suite 5450

Woburn, MA 01801

781.281-2703

hlevine@bioprocessconsultants.com

www.bioprocessconsultants.com